South East Asian J. of Mathematics and Mathematical Sciences Vol. 15, No. 1 (2019), pp. 15-24.

ISSN (Print): 0972-7752

ON $(p,q)^{th}$ GOL'DBERG ORDER AND $(p,q)^{th}$ GOL'DBERG TYPE OF AN ENTIRE FUNCTION OF SEVERAL COMPLEX VARIABLES REPRESENTED BY MULTIPLE DIRICHLET SERIES

Dibyendu Banerjee and Simul Sarkar

Department of Mathematics Visva-Bharati, Santiniketan-731235, West Bengal, INDIA.

E-mail: dibyendu192@rediffmail.com, simulsarkar0101@gmail.com

(Received: November 26, 2018)

Abstract: Introducing the idea of $(p,q)^{th}$ Gol'dberg order and $(p,q)^{th}$ Gol'dberg type of an entire function f of several complex variables in a domain D we generalise some earlier results.

Keywords and Phrases: Entire function, Multiple Dirichlet series, Gol'dberg order, Gol'dberg type.

2010 Mathematics Subject Classification: 32A15.

1. Introduction

In this paper we denote complex and real n-space by \mathbb{C}^n and \mathbb{R}^n respectively. We write the elements $(s_1, s_2, ..., s_n)$, $(Re\ s_1, Re\ s_2, ..., Re\ s_n)$, $(\sigma_1, \sigma_2, ..., \sigma_n)$, $(m_1, m_2, ..., m_n)$ etc. of \mathbb{C}^n by their corresponding unsuffixed symbols s, $Re\ s$, σ , m etc. respectively.

For $x, y \in \mathbb{C}^n$, we define $x = (x_1, x_2, ..., x_n), y = (y_1, y_2, ..., y_n), xy = (x_1y_1, x_2y_2, ..., x_ny_n), ||x|| = x_1 + x_2 + ... + x_n, x + r = (x_1 + r, x_2 + r, ..., x_n + r)$ for $r \in \mathbb{R}$. By I^n we shall mean the Cartesian product of n copies of I where I is the set of non-negative integers. For $k \in I$, \bar{k} will denote the real n-tuple (k, k, ..., k). For an entire function f with domain \mathbb{C}^n , f^k will denote the function $\frac{\partial^{||k||} f}{\partial_{s_1}^{k_1} ... \partial_{s_n}^{k_n}}$, where $k \in I^n$ and $f^{(\bar{0})} = f$. Consider the multiple Dirichlet series

$$f(s_1, s_2, ..., s_n) = \sum_{m_1, m_2, ..., m_n = 1}^{\infty} a_{m_1, m_2, ..., m_n} exp(s_1 \lambda_{1m_1} + s_2 \lambda_{2m_2} + ... + s_n \lambda_{nm_n})$$

$$i.e., f(s) = \sum_{m=1}^{\infty} a_m exp||s\lambda_{nm_n}||, \quad (s_j = \sigma_j + it_j, \quad j = 1, 2, ..., n)$$
 (1.1)

where $a_m \in \mathbb{C}$, λ_{nm_n} denotes the real-tuple $(\lambda_{1m_1}, \lambda_{2m_2}, ..., \lambda_{nm_n})$; $0 \le \lambda_{p_1} < \lambda_{p_2} < ... < \lambda_{p_k} \to \infty$ as $k \to \infty$, for p = 1, 2, ..., n.

Janusaukas [2] had shown that if there exists a tuple $p > \bar{0} = (0, 0, ..., 0)$ such that

$$\lim \sup_{\|m\| \to \infty} \frac{\sum_{k=1}^{n} log m_k}{\|p\lambda_{nm_n}\|} = 0 \tag{1.2}$$

then the domain of absolute convergence of the series (1.1) coincides with its domain of convergence.

The necessary and sufficient [4] condition that the series (1.1) satisfying (1.2) to be entire is that

$$\lim_{\|m\| \to \infty} \frac{\log |a_m|}{\|\lambda_{nm_n}\|} = -\infty. \tag{1.3}$$

For two entire functions f and g, Hadamard product [6] f * g is defined by

$$f(s) * g(s) = \sum_{m=1}^{\infty} a_m b_m exp||s\lambda_{nm_n}||$$
(1.4)

where $f(s) = \sum_{m=1}^{\infty} a_m exp||s\lambda_{nm_n}||$ and $g(s) = \sum_{m=1}^{\infty} b_m exp||s\lambda_{nm_n}||$. For $k \in I^n$, we define

$$f^{k}(s) = \sum_{m=1}^{\infty} \lambda^{k}{}_{nm_{n}} a_{m} exp||s\lambda_{nm_{n}}||$$
(1.5)

and

$$f^{k}(s) * g^{k}(s) = \sum_{m=1}^{\infty} \lambda^{2k}{}_{nm_{n}} a_{m} b_{m} exp||s\lambda_{nm_{n}}||.$$
 (1.6)

Following Sato [3], we write $log^{[0]}x = x$, $exp^{[0]}x = x$ and for positive integer $m \ge 1$, $log^{[m]}x = log(log^{[m-1]}x)$, $exp^{[m]}x = exp(exp^{[m-1]}x)$.

In this paper F stands for the family of all multiple Dirichlet series of the form (1.1) satisfying (1.2) and (1.3). Then $f \in F$ denotes an entire function over \mathbb{C}^n . For given $l \in \mathbb{R}^n$, Sarkar [4] defined the poly half plane D as $D = \{s : s \in \mathbb{C}^n, Re \ s = \sigma \leq l\}$. Then the region D + r depending on the parameter $r \in R$ is defined as

 $D+r=\{s+r:s\in D\}$. For any $f\in F$, Sarkar [4] defined the maximum modulus $M_{f,D}(r)$ with respect to the region D where $r\in R$ as

$$M_{f,D}(r) = \sup\{|f(s)| : s \in D + r\}.$$

Also the maximum term $\mu_f = \mu_f(\sigma)$ at $\sigma \in \mathbb{R}^n$ is defined by

$$\mu_f(\sigma) = \sup_{m \in \mathbb{N}^n} \{ |a_m| exp| |\sigma \lambda_{nm_n}| \}$$

where \mathbb{N} is the set of all positive integers.

Definition 1.1. [4] The Gol'dberg order $\rho(D)$ of f with respect to the domain D is defined as

$$\rho(D) = \limsup_{r \to \infty} \frac{loglog M_{f,D}(r)}{r}.$$

Definition 1.2. [4] The Gol'dberg order $\rho_k(D)$ of f^k with respect to the domain D is defined as

$$\rho_k(D) = \limsup_{r \to \infty} \frac{loglog M_{f^k, D}(r)}{r}.$$

Definition 1.3. [4] The Gol'dberg type $\tau(D)$ of f with respect to the domain D is defined as

$$\tau(D) = \limsup_{r \to \infty} \frac{\log M_{f,D}(r)}{e^{r\rho(D)}}, \ if \ \rho(D) > 0.$$

Definition 1.4. [4] $f \in F$ is of Gol'dberg order ρ iff $\rho = \rho(D) = \limsup_{\|m\| \to \infty} \frac{||\lambda_{nm_n}|| \log ||\lambda_{nm_n}||}{-\log\{|a_m|\phi_D(m)\}}$ where $\phi_D(m) = \sup_{s \in D} ||exp||s\lambda_{nm_n}||$ |.

In [4], Sarkar proved the following theorems.

Theorem 1.1. Let $f \in F$. Then

$$\mu_f(l+\sigma) \le M_{f,D}(\sigma) \le K\mu_f(l+\sigma+\epsilon)$$

where K is positive constant depending on $\epsilon \in R_+$.

Theorem 1.2. Let $f \in F$. Then for any $K \in R$ (i) $\rho(D+K) = \rho(D)$

(ii) If
$$\rho(D) > 0$$
, then $\tau(D + K) = e^{K\rho} \tau(D)$ where $\rho = \rho(D)$.

In [1], Alam proved the following theorems.

Theorem 1.3. The function $f^k * g^k$ as defined (1.6) is an entire function.

Theorem 1.4. Let f and g be entire functions where

$$f^{k}(s) = \sum_{m=1}^{\infty} \lambda_{nm_{n}}^{k} a_{m} exp\{s\lambda_{nm_{n}}\}$$

and

$$g^{k}(s) = \sum_{m=1}^{\infty} \lambda_{nm_{n}}^{k} b_{m} exp\{s\lambda_{nm_{n}}\}$$

having G-order ρ_{k_f} $(0 < \rho_{k_f} < \infty)$ and ρ_{k_g} $(0 < \rho_{k_g} < \infty)$ respectively. Then $f^k(s)*g^k(s)$ is an entire function with G-order ρ_k such that $\rho_k \leq (\rho_{k_f}\rho_{k_g})^{\frac{1}{2}}$ provided that

$$log \frac{1}{|\lambda_{nm_n}^{2k} a_m b_m|} \sim [log \frac{1}{|\lambda_{nm_n}^k a_m|} log \frac{1}{|\lambda_{nm_n}^k b_m|}]^{\frac{1}{2}}.$$

Theorem 1.5. Let f^k and g^k be entire functions of G-order ρ_{k_f} $(0 < \rho_{k_f} < \infty)$ and ρ_{k_g} $(0 < \rho_{k_g} < \infty)$ and finite G-type $T_{k_f}(D)$ and $T_{k_g}(D)$ respectively having the same fundamental domain D. If $f^k * g^k$ is of G-order ρ_k $(0 < \rho_k < \infty)$, where $log M_{f^k * g^k}(r) \sim log M_{f^k, D}(r) log M_{g^k, D}(r)$, then $\rho_k \leq \rho_{k_f} + \rho_{k_g}$.

Also if $T_k(D)$ be the G-type of $f^k * g^k$ with respect to the domain D then $T_k(D) \le T_{k_f}(D)T_{k_g}(D)$ provided the sign of equality holds in $\rho_k \le \rho_{k_f} + \rho_{k_g}$.

In [5], Singh and Rastogi proved the following theorems.

Theorem 1.6. Let f be an entire function defined in domain D and $k \in R$. Then (i) $\rho^q(D+k) = \rho^q(D)$

(ii) If $\rho^q(D) > 0$, then $T^q(D+k) = T^q(D)$.

Theorem 1.7. Let f and g be entire functions, where

$$f^{k}(s) = \sum_{m=1}^{\infty} \lambda_{nm_{n}}^{k} a_{m} exp\{s\lambda_{nm_{n}}\}$$

and

$$g^{k}(s) = \sum_{m=1}^{\infty} \lambda_{nm_{n}}^{k} b_{m} exp\{s\lambda_{nm_{n}}\}$$

having q^{th} Gol'dberg order $\rho_{k_f}^q$ $(0 < \rho_{k_f}^q < \infty)$ and $\rho_{k_g}^q$ $(0 < \rho_{k_g}^q < \infty)$ respectively. Then $f^k(s) * g^k(s)$ is an entire function with q^{th} Gol'dberg order ρ_k^q such that $\rho_k^q \leq$

 $(\rho_{k_f}^q \rho_{k_g}^q)^{\frac{1}{2}}$ provided

$$log \frac{1}{|\lambda_{nm_n}^{2k} a_m b_m|} \sim [log \frac{1}{|\lambda_{nm_n}^{k} a_m|} log \frac{1}{|\lambda_{nm_n}^{k} b_m|}]^{\frac{1}{2}}.$$

Theorem 1.8. Let f^k and g^k be entire functions with q^{th} Gol'dberg order $\rho_{k_f}^q$ (0 < $\rho_{k_f}^q < \infty$) and $\rho_{k_g}^q$ (0 < $\rho_{k_g}^q < \infty$) respectively and also q^{th} Gol'dberg type $T_{k_f}^q$ and $T_{k_g}^q$. Then $\rho_k^q \leq \rho_{k_f}^q + \rho_{k_g}^q$ and also $T_k^q \leq T_{k_f}^q(D)T_{k_g}^q(D)$.

Theorem 1.9. If

$$\rho^{q}(D) = \limsup_{\sigma \to \infty} \frac{\log^{[q]} M_{f,D}(\sigma)}{\log \sigma}$$

then

$$\limsup_{\sigma \to \infty} \frac{\log^{[q]} \mu_{f,D}(l+\sigma)}{\log \sigma} \le \rho$$

and

$$\limsup_{\sigma \to \infty} \frac{\log^{[q]} \mu_{f,D}(l + \sigma + \epsilon)}{\log \sigma} \ge \frac{\rho}{k},$$

where k is a positive constant.

With this in view we first introduce the following definitions.

Definition 1.5. The $(p,q)^{th}$ Gol'dberg order of an entire function f in the corresponding domain D is defined by

$$\rho^{[p,q]}(D) = \limsup_{\sigma \to \infty} \frac{\log^{[p]} M_{f,D}(\sigma)}{\log^{[q]} \sigma}.$$

Definition 1.6. The $(p,q)^{th}$ Gol'dberg type of an entire function f in the corresponding domain D is defined by

$$T^{[p,q]}(D) = \limsup_{\sigma \to \infty} \frac{\log^{[p-1]} M_{f,D}(\sigma)}{[\log^{[q-1]} \sigma]^{\rho^{[p,q]}(D)}}.$$

Definition 1.7. The $(p,q)^{th}$ Gol'dberg order of an entire function f^k in the corresponding domain D is defined by

$$\rho_{k_f}^{[p,q]}(D) = \limsup_{\sigma \to \infty} \frac{\log^{[p]} M_{f^k,D}(\sigma)}{\log^{[q]} \sigma}.$$
(1.7)

Definition 1.8. The $(p,q)^{th}$ Gol'dberg type of an entire function f^k in the corresponding domain D is defined by

$$T_{k_f}^{[p,q]}(D) = \limsup_{\sigma \to \infty} \frac{\log^{[p-1]} M_{f^k,D}(\sigma)}{[\log^{[q-1]} \sigma]^{\rho_{k_f}^{[p,q]}(D)}}.$$
 (1.8)

2. Main Results

With these definitions of $(p,q)^{th}$ Gol'dberg order and $(p,q)^{th}$ Gol'dberg type we prove above theorems in this direction.

Theorem 2.1. Let f be an entire function defined in domain D and $K \in R$. Then $(i) \rho^{[p,q]}(D+K) = \rho^{[p,q]}(D)$

(ii) If
$$\rho^{[p,q]}(D) > 0$$
, then $T^{[p,q]}(D+K) = T^{[p,q]}(D)$.

Proof. (i) Let $K \in \mathbb{R}$. Then from the definition of $\rho^{[p,q]}(D)$ we write

$$\rho^{[p,q]}(D) = \limsup_{\sigma \to \infty} \frac{\log^{[p]} M_{f,D}(\sigma + K)}{\log^{[q]}(\sigma + K)}$$

$$= \limsup_{\sigma \to \infty} \frac{\log^{[p]} M_{f,D+K}(\sigma)}{\log^{[q]}(\sigma)} \frac{\log^{[q]}(\sigma)}{\log^{[q]}(\sigma + K)}$$

$$= \rho^{[p,q]}(D + K).$$

(ii) By the definition of $T^{[p,q]}(D)$ we write

$$T^{[p,q]}(D) = \limsup_{\sigma \to \infty} \frac{\log^{[p-1]} M_{f,D}(\sigma + K)}{[\log^{[q-1]}(\sigma + K)]^{\rho^{[p,q]}(D)}}$$

$$= \limsup_{\sigma \to \infty} \frac{\log^{[p-1]} M_{f,D+K}(\sigma)}{[\log^{[q-1]}\sigma]^{\rho^{[p,q]}(D)}} \frac{[\log^{[q-1]}\sigma]^{\rho^{[p,q]}(D)}}{[\log^{[q-1]}(\sigma + K)]^{\rho^{[p,q]}(D)}}$$

$$= T^{[p,q]}(D + K).$$

Remark 2.1. From Theorem 2.1, it is clear that the $(p,q)^{th}$ Gol'dberg order and $(p,q)^{th}$ Gol'dberg type of $f \in F$ are independent of the choice of the poly half plane D.

Theorem 2.2. Let f and g be entire functions, where

$$f^{k}(s) = \sum_{m=1}^{\infty} \lambda_{nm_{n}}^{k} a_{m} exp\{s\lambda_{nm_{n}}\}$$

and

$$g^{k}(s) = \sum_{m=1}^{\infty} \lambda_{nm_{n}}^{k} b_{m} exp\{s\lambda_{nm_{n}}\}$$

having $(p,q)^{th}$ Gol'dberg order $\rho_{k_f}^{[p,q]}$ $(0<\rho_{k_f}^{[p,q]}<\infty)$ and $\rho_{k_g}^{[p,q]}$ $(0<\rho_{k_g}^{[p,q]}<\infty)$ respectively. Then $f^k(s)*g^k(s)$ is an entire function with $(p,q)^{th}$ Gol'dberg order $\rho_k^{[p,q]}$ such that $\rho_k^{[p,q]} \leq (\rho_{k_f}^{[p,q]}.\rho_{k_g}^{[p,q]})^{\frac{1}{2}}$ provided

$$log^{[p]} M_{f^k * q^k, D}(\sigma) \sim [log^{[p]} M_{f^k, D}(\sigma). log^{[p]} M_{q^k, D}(\sigma)]^{\frac{1}{2}}.$$

Proof. We have $f^k(s) * g^k(s)$ is an entire function by Theorem 1.3. Now from the definition of $(p,q)^{th}$ Gol'dberg order of entire functions f^k and g^k we write,

$$\rho_{k_f}^{[p,q]} = \limsup_{\sigma \to \infty} \frac{\log^{[p]} M_{f^k,D}(\sigma)}{\log^{[q]} \sigma}$$

and

$$\rho_{k_g}^{[p,q]} = \limsup_{\sigma \to \infty} \frac{\log^{[p]} M_{g^k,D}(\sigma)}{\log^{[q]} \sigma}.$$

Hence for an arbitrary $\epsilon > 0$,

$$\frac{\log^{[p]} M_{f^k,D}(\sigma)}{\log^{[q]} \sigma} \le \left(\rho_{k_f}^{[p,q]} + \frac{\epsilon}{2}\right)$$

and

$$\frac{\log^{[p]} M_{g^k,D}(\sigma)}{\log^{[q]} \sigma} \leq (\rho_{k_g}^{[p,q]} + \frac{\epsilon}{2}).$$

Now taking product we get,

$$\frac{\log^{[p]} M_{f^k,D}(\sigma).log^{[p]} M_{g^k,D}(\sigma)}{(loq^{[q]}\sigma)^2} \leq (\rho_{k_f}^{[p,q]} + \frac{\epsilon}{2})(\rho_{k_g}^{[p,q]} + \frac{\epsilon}{2})$$

or,

$$\frac{[\log^{[p]} M_{f^k,D}(\sigma).log^{[p]} M_{g^k,D}(\sigma)]^{\frac{1}{2}}}{(\log^{[q]} \sigma)} \leq [(\rho_{k_f}^{[p,q]} + \frac{\epsilon}{2})(\rho_{k_g}^{[p,q]} + \frac{\epsilon}{2})]^{\frac{1}{2}}.$$

Now if

$$log^{[p]}M_{f^k*g^k,D}(\sigma) \sim [log^{[p]}M_{f^k,D}(\sigma).log^{[p]}M_{g^k,D}(\sigma)]^{\frac{1}{2}}$$

then we get from above

$$\frac{\log^{[p]} M_{f^k * g^k, D}(\sigma)}{\log^{[q]} \sigma} \le [(\rho_{k_f}^{[p,q]} + \frac{\epsilon}{2})(\rho_{k_g}^{[p,q]} + \frac{\epsilon}{2})]^{\frac{1}{2}}.$$

Therefore,

$$\limsup_{\sigma \to \infty} \frac{\log^{[p]} M_{f^k * g^k, D}(\sigma)}{\log^{[q]} \sigma} \leq [\rho_{k_f}^{[p,q]}. \rho_{k_g}^{[p,q]}]^{\frac{1}{2}}.$$

Hence $\rho_k^{[p,q]} \leq (\rho_{k_f}^{[p,q]}.\rho_{k_g}^{[p,q]})^{\frac{1}{2}}.$

Theorem 2.3. Let $f^k(s)$ and $g^k(s)$ be entire functions with $(p,q)^{th}$ Gol'dberg order $\rho_{k_f}^{[p,q]}$ $(0<\rho_{k_f}^{[p,q]}<\infty)$ and $\rho_{k_g}^{[p,q]}$ $(0<\rho_{k_g}^{[p,q]}<\infty)$ and finite $(p,q)^{th}$ Gol'dberg type $T_{k_f}^{[p,q]}$ and $T_{k_g}^{[p,q]}$ respectively having the same fundamental domain D. If $f^k(s)*g^k(s)$ is of $(p,q)^{th}$ Gol'dberg order $\rho_k^{[p,q]}$ $(0<\rho_k^{[p,q]}<\infty)$, where $[\log^{[p-1]}M_{f^k,D}(\sigma)\log^{[p-1]}M_{g^k,D}(\sigma)]\sim \log^{[p-1]}M_{f^k*g^k,D}(\sigma)$, then $\rho_k^{[p,q]}\leq \rho_{k_f}^{[p,q]}+\rho_{k_g}^{[p,q]}$. Also if $T_k^{[p,q]}$ be the $(p,q)^{th}$ Gol'dberg type of $f^k(s)*g^k(s)$ with respect to the domain D then $T_k^{[p,q]}\leq T_{k_f}^{[p,q]}T_{k_g}^{[p,q]}$ provided the sign of equality holds in $\rho_k^{[p,q]}\leq \rho_{k_f}^{[p,q]}+\rho_{k_g}^{[p,q]}$.

Proof. We have

$$\rho_{k_f}^{[p,q]} = \limsup_{\sigma \to \infty} \frac{\log^{[p]} M_{f^k,D}(\sigma)}{\log^{[q]} \sigma}$$

and

$$\rho_{k_g}^{[p,q]} = \limsup_{\sigma \to \infty} \frac{\log^{[p]} M_{g^k,D}(\sigma)}{\log^{[q]} \sigma}.$$

Hence for an arbitrary $\epsilon > 0$,

$$\begin{split} \frac{\log^{[p]} M_{f^k,D}(\sigma)}{\log^{[q]} \sigma} & \leq (\rho_{k_f}^{[p,q]} + \frac{\epsilon}{2}) \\ \\ or, \ \log^{[p]} M_{f^k,D}(\sigma) & \leq (\rho_{k_f}^{[p,q]} + \frac{\epsilon}{2}) \ \log^{[q]} \sigma \\ \\ or, \ \log^{[p-1]} M_{f^k,D}(\sigma) & \leq \exp[(\rho_{k_f}^{[p,q]} + \frac{\epsilon}{2}) \ \log^{[q]} \sigma] \end{split}$$

and similarly

$$log^{[p-1]}M_{g^k,D}(\sigma) \le exp[(\rho_{k_g}^{[p,q]} + \frac{\epsilon}{2}) \ log^{[q]}\sigma].$$

Now taking product we get,

$$log^{[p-1]}M_{f^k,D}(\sigma)\ log^{[p-1]}M_{g^k,D}(\sigma) \le exp[(\rho_{k_f}^{[p,q]} + \rho_{k_g}^{[p,q]} + \epsilon)\ log^{[q]}\sigma].$$

Thus if

$$[log^{[p-1]}M_{f^k,D}(\sigma) \ log^{[p-1]}M_{g^k,D}(\sigma)] \sim log^{[p-1]}M_{f^k*g^k,D}(\sigma)$$

then we get from above

$$log^{[p-1]}M_{f^k*g^k,D}(\sigma) < exp[(\rho_{k_f}^{[p,q]} + \rho_{k_q}^{[p,q]} + \epsilon) \ log^{[q]}\sigma].$$

Therefore,

$$\limsup_{\sigma \to \infty} \frac{\log^{[p]} M_{f^k * g^k, D}(\sigma)}{\log^{[q]} \sigma} \le [\rho_{k_f}^{[p, q]} + \rho_{k_g}^{[p, q]}] + \epsilon.$$

Hence $\rho_k^{[p,q]} \leq \rho_{k_f}^{[p,q]} + \rho_{k_g}^{[p,q]}$.

Again from (1.8)

$$\frac{\log^{[p-1]} M_{f^k,D}(\sigma)}{[\log^{[q-1]} \sigma]^{\rho_{k_f}^{[p,q]}(D)}} < T_{k_f}^{[p,q]}(D) + \epsilon$$

and

$$\frac{\log^{[p-1]} M_{g^k,D}(\sigma)}{[\log^{[q-1]} \sigma]^{\rho_{k_g}^{[p,q]}(D)}} < T_{k_g}^{[p,q]}(D) + \epsilon.$$

Now taking product we get,

$$\{\frac{\log^{[p-1]}M_{f^k,D}(\sigma)}{[\log^{[q-1]}\sigma]^{\rho_{k_f}^{[p,q]}(D)}}\}\{\frac{\log^{[p-1]}M_{g^k,D}(\sigma)}{[\log^{[q-1]}\sigma]^{\rho_{k_g}^{[p,q]}(D)}}\}<(T_{k_f}^{[p,q]}(D)+\epsilon)(T_{k_g}^{[p,q]}(D)+\epsilon).$$

If

$$[log^{[p-1]}M_{f^k,D}(\sigma)\ log^{[p-1]}M_{g^k,D}(\sigma)] \sim log^{[p-1]}M_{f^k*g^k,D}(\sigma)$$

then we get from above

$$\frac{\log^{[p-1]} M_{f^k * g^k, D}(\sigma)}{[\log^{[q-1]} \sigma]^{\rho_{k_f}^{[p,q]}(D) + \rho_{k_g}^{[p,q]}(D)}} < (T_{k_f}^{[p,q]}(D) + \epsilon)(T_{k_g}^{[p,q]}(D) + \epsilon).$$

Since $\rho_k^{[p,q]} = \rho_{k_f}^{[p,q]} + \rho_{k_g}^{[p,q]}$ then

$$\limsup_{\sigma \to \infty} \frac{\log^{[p-1]} M_{f^k * g^k, D}(\sigma)}{[\log^{[q-1]} \sigma]^{\rho_k^{[p,q]}(D)}} \le T_{k_f}^{[p,q]}(D) T_{k_g}^{[p,q]}(D)$$

i.e.,

$$T_k^{[p,q]} \le T_{k_f}^{[p,q]} T_{k_q}^{[p,q]}.$$

This completes the proof.

Theorem 2.4. If

$$\rho^{[p,q]}(D) = \limsup_{\sigma \to \infty} \frac{\log^{[p]} M_{f,D}(\sigma)}{\log^{[q]} \sigma}$$

then

$$\limsup_{\sigma \to \infty} \frac{\log^{[p]} \mu_{f,D}(l+\sigma)}{\log^{[q]} \sigma} \le \rho^{[p,q]}(D)$$

$$and \limsup_{\sigma \to \infty} \frac{log^{[p]} \mu_{f,D}(l+\sigma+\epsilon)}{log^{[q]}\sigma} \geq \frac{\rho^{[p,q]}(D)}{K}, \ where \ K \ is \ a \ positive \ constant.$$

Proof. We have from Theorem 1.1

$$\mu_f(l+\sigma) \leq M_{f,D}(\sigma)$$
i.e., $\limsup_{\sigma \to \infty} \frac{\log^{[p]} \mu_{f,D}(l+\sigma)}{\log^{[q]} \sigma} \leq \limsup_{\sigma \to \infty} \frac{\log^{[p]} M_{f,D}(\sigma)}{\log^{[q]} \sigma}$

$$So, \limsup_{\sigma \to \infty} \frac{\log^{[p]} \mu_{f,D}(l+\sigma)}{\log^{[q]} \sigma} \leq \rho^{[p,q]}(D).$$

Also

$$K\mu_{f}(l+\sigma+\epsilon) \geq M_{f,D}(\sigma)$$
i.e., $\limsup_{\sigma \to \infty} \frac{log^{[p]}\mu_{f,D}(l+\sigma+\epsilon)}{log^{[q]}\sigma} \geq \frac{1}{K} \limsup_{\sigma \to \infty} \frac{log^{[p]}M_{f,D}(\sigma)}{log^{[q]}\sigma}$

$$So, \limsup_{\sigma \to \infty} \frac{log^{[p]}\mu_{f,D}(l+\sigma+\epsilon)}{log^{[q]}\sigma} \geq \frac{\rho^{[p,q]}(D)}{K}.$$

Hence the result.

References

- [1] Feruj, A., Gol'dberg order and Gol'dberg type of entire functions represented by multiple Dirichlet series, Ganitj Bangladesh Math. Soc, 29, (2009), pp 63-70.
- [2] Janusauskas, A. I., Elementary theorems on the convergence of double Dirichlet series, Soviet Math. Dokl. 18(3), (1977), pp 610-614.
- [3] Sato, D., On the rate of growth of entire functions of fast growth, Bull. Amer. Math. Soc., 69(3), (1963), pp 411-414.
- [4] Sarkar, P.K., On Gol'dberg order and Gol'dberg type of an entire function of several complex variables represented by multiple Dirichlet series, Indian J. of pure and App. Math. 13(10), (1982), pp 1221-1229.
- [5] Singh, U.V. and Rastogi, A., On Gol'dberg qth Order and Gol'dberg qth Type of an Entire Function Represented by Multiple Dirichlet Series, International Journal of Mathematics And its Applications, 3(3-D), (2015), pp 51-56.
- [6] Titchmarsh, E.C., *The Theory of Functions*, Oxford univ. press, (1932), pp 157-158.